Piecewise automatic groups
Erschler, Anna
Duke Math. J., Tome 131 (2006) no. 1, p. 591-613 / Harvested from Project Euclid
We introduce a notion of a piecewise automatic group. Among these groups we describe a new class of groups of intermediate growth. We show that for any function $f{:} {\mathbb N} \to {\mathbb N}$ , there exists a finitely generated torsion group of intermediate growth $G$ for which the Følner function satisfies $\mathrm{Føl}_{G,S}{(n)\ge f(n)}$ for some generating set $S$ and all sufficiently large $n$ . As a corollary we see that the asymptotic entropy of simple random walks on these groups could be arbitrarily close to being linear, while the Poisson boundary is trivial
Publié le : 2006-09-15
Classification:  20F65,  20F69,  20E08,  60B15,  20F05,  20F50
@article{1156771904,
     author = {Erschler, Anna},
     title = {Piecewise automatic groups},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 591-613},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1156771904}
}
Erschler, Anna. Piecewise automatic groups. Duke Math. J., Tome 131 (2006) no. 1, pp.  591-613. http://gdmltest.u-ga.fr/item/1156771904/