The local lifting problem for dihedral groups
Bouw, Irene I. ; Wewers, Stefan
Duke Math. J., Tome 131 (2006) no. 1, p. 421-452 / Harvested from Project Euclid
Let $G=D_p$ be the dihedral group of order $2p$ , where $p$ is an odd prime. Let $k$ be an algebraically closed field of characteristic $p$ . We show that any action of $G$ on the ring $k[[y]]$ can be lifted to an action on $R[[y]]$ , where $R$ is some complete discrete valuation ring with residue field $k$ and fraction field of characteristic $0$
Publié le : 2006-09-15
Classification:  14H37,  11G20,  14D15
@article{1156771900,
     author = {Bouw, Irene I. and Wewers, Stefan},
     title = {The local lifting problem for dihedral groups},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 421-452},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1156771900}
}
Bouw, Irene I.; Wewers, Stefan. The local lifting problem for dihedral groups. Duke Math. J., Tome 131 (2006) no. 1, pp.  421-452. http://gdmltest.u-ga.fr/item/1156771900/