Stickelberger ideals of conductor p and their application
ICHIMURA, Humio ; SUMIDA-TAKAHASHI, Hiroki
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 885-902 / Harvested from Project Euclid
Let $p$ be an odd prime number and $F$ a number field. Let $K=F(\zeta_p)$ and $\Delta=\mathrm{Gal}(K/F)$ . Let $\mathscr{S}_{\Delta}$ be the Stickelberger ideal of the group ring $\mathbf{Z}[\Delta]$ defined in the previous paper [8]. As a consequence of a $p$ -integer version of a theorem of McCulloh [15], [16], it follows that $F$ has the Hilbert-Speiser type property for the rings of $p$ -integers of elementary abelian extensions over $F$ of exponent $p$ if and only if the ideal $\mathscr{S}_{\Delta}$ annihilates the $p$ -ideal class group of $K$ . In this paper, we study some properties of the ideal $\mathscr{S}_{\Delta}$ ,and check whether or not a subfield of $\mathbf{Q}(\zeta_p)$ satisfies the above property.
Publié le : 2006-07-14
Classification:  Stickelberger ideal,  normal integral basis,  11R18,  11R33
@article{1156342042,
     author = {ICHIMURA, Humio and SUMIDA-TAKAHASHI, Hiroki},
     title = {Stickelberger ideals of conductor p and their application},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 885-902},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1156342042}
}
ICHIMURA, Humio; SUMIDA-TAKAHASHI, Hiroki. Stickelberger ideals of conductor p and their application. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  885-902. http://gdmltest.u-ga.fr/item/1156342042/