On an integral representation of special values of the zeta function at odd integers
ITO, Takashi
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 681-691 / Harvested from Project Euclid
An integral representation of the $p$ -series of odd $p$ is shown; $$\sum^\infty_{n=1} \frac{1}{n^{2p+1}} = (-1)^p \frac{(2\pi)^{2p}}{(2p)!} \int^1_0 B_{2p}(t) \log(\sin\pi t)\mathrm{d} t\quad (p=1,2,\ldots),$$ where $B_{2p}(t)$ is a Bernoulli polynomial of degree $2p$ . As a consequence of this we have $$\sum^\infty_{n=1} \frac{1}{n^{2p+1}} = (-1)^p \frac{(2\pi)^{2p}}{(2p)!} 2 \left[ \sum^p_{k=0} \left( \begin{array}{c}2p\\ 2k\end{array}\right) B_{2p-2k} \left( \frac 1 2 \right) b_{2k} \right],$$ where $b_{2k} = \int^{\frac 1 2}_0 t^{2k} \log(\cos\pi t) \mathrm{d} t$ , $k = 0,1,\ldots,p$ .
Publié le : 2006-07-14
Classification:  Bernoulli polynomials,  convolutions,  Fourier series,  11B68,  42A85
@article{1156342033,
     author = {ITO, Takashi},
     title = {On an integral representation of special values of the zeta function at odd integers},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 681-691},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1156342033}
}
ITO, Takashi. On an integral representation of special values of the zeta function at odd integers. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  681-691. http://gdmltest.u-ga.fr/item/1156342033/