Steiner ratio for hyperbolic surfaces
Innami, Nobuhiro ; Kim, Byung Hak
Proc. Japan Acad. Ser. A Math. Sci., Tome 82 (2006) no. 2, p. 77-79 / Harvested from Project Euclid
We prove that the Steiner ratio for hyperbolic surfaces is $1/2$.
Publié le : 2006-06-14
Classification:  Steiner ratio,  Steiner tree,  Riemannian geometry,  geodesic,  hyperbolic geometry,  53C20,  05C05
@article{1155820123,
     author = {Innami, Nobuhiro and Kim, Byung Hak},
     title = {Steiner ratio for hyperbolic surfaces},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {82},
     number = {2},
     year = {2006},
     pages = { 77-79},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1155820123}
}
Innami, Nobuhiro; Kim, Byung Hak. Steiner ratio for hyperbolic surfaces. Proc. Japan Acad. Ser. A Math. Sci., Tome 82 (2006) no. 2, pp.  77-79. http://gdmltest.u-ga.fr/item/1155820123/