We study so-called augmented GARCH sequences, which include many submodels of considerable interest, such as polynomial and exponential GARCH. To model the returns of speculative assets, it is particularly important to understand the behaviour of the squares of the observations. The main aim of this paper is to present a strong approximation for the sum of the squares. This will be achieved by an approximation of the volatility sequence with a sequence of blockwise independent random variables. Furthermore, we derive a necessary and sufficient condition for the existence of a unique (strictly) stationary solution of the general augmented GARCH equations. Also, necessary and sufficient conditions for the finiteness of moments are provided.