This paper describes opportunities and challenges of using functional data analysis (FDA) for the exploration and analysis of data originating from electronic commerce (eCommerce). We discuss the special data structures that arise in the online environment and why FDA is a natural approach for representing and analyzing such data. The paper reviews several FDA methods and motivates their usefulness in eCommerce research by providing a glimpse into new domain insights that they allow. We argue that the wedding of eCommerce with FDA leads to innovations both in statistical methodology, due to the challenges and complications that arise in eCommerce data, and in online research, by being able to ask (and subsequently answer) new research questions that classical statistical methods are not able to address, and also by expanding on research questions beyond the ones traditionally asked in the offline environment. We describe several applications originating from online transactions which are new to the statistics literature, and point out statistical challenges accompanied by some solutions. We also discuss some promising future directions for joint research efforts between researchers in eCommerce and statistics.