On supersimplicity and lovely pairs of cats
Ben-Yaacov, Itay
J. Symbolic Logic, Tome 71 (2006) no. 1, p. 763-776 / Harvested from Project Euclid
We prove that the definition of supersimplicity in metric structures from [7] is equivalent to an a priori stronger variant. This stronger variant is then used to prove that if T is a supersimple Hausdorff cat then so is its theory of lovely pairs.
Publié le : 2006-09-14
Classification:  beautiful pairs,  lovely pairs,  supersimplicity,  superstability,  Hausdorff cats,  metric structures,  03C45,  03C90,  03C95
@article{1154698575,
     author = {Ben-Yaacov, Itay},
     title = {On supersimplicity and lovely pairs of cats},
     journal = {J. Symbolic Logic},
     volume = {71},
     number = {1},
     year = {2006},
     pages = { 763-776},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1154698575}
}
Ben-Yaacov, Itay. On supersimplicity and lovely pairs of cats. J. Symbolic Logic, Tome 71 (2006) no. 1, pp.  763-776. http://gdmltest.u-ga.fr/item/1154698575/