A logarithmic fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions and some regularity results are shown. Furthermore, we prove that the solution converges exponentially fast to its mean value in the ``entropy norm'' and in the Fisher information, using a new optimal logarithmic Sobolev inequality for higher derivatives. In particular, the rate is independent of the solution and the constant depends only on the initial value of the entropy.