Interpolation and the Interpretability Logic of PA
Goris, Evan
Notre Dame J. Formal Logic, Tome 47 (2006) no. 1, p. 179-195 / Harvested from Project Euclid
In this paper we will be concerned with the interpretability logic of PA and in particular with the fact that this logic, which is denoted by ILM, does not have the interpolation property. An example for this fact seems to emerge from the fact that ILM cannot express Σ₁-ness. This suggests a way to extend the expressive power of interpretability logic, namely, by an additional operator for Σ₁-ness, which might give us a logic with the interpolation property. We will formulate this extension, give an axiomatization which is modally complete and arithmetically complete (although for proofs of these theorems we refer to an earlier paper), and investigate interpolation. We show that this logic still does not have the interpolation property.
Publié le : 2006-04-14
Classification:  provability logic,  interpretability logic,  interpolation,  03B45,  03F30
@article{1153858645,
     author = {Goris, Evan},
     title = {Interpolation and the Interpretability Logic of PA},
     journal = {Notre Dame J. Formal Logic},
     volume = {47},
     number = {1},
     year = {2006},
     pages = { 179-195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153858645}
}
Goris, Evan. Interpolation and the Interpretability Logic of PA. Notre Dame J. Formal Logic, Tome 47 (2006) no. 1, pp.  179-195. http://gdmltest.u-ga.fr/item/1153858645/