Cobordisme des surfaces plongées dans $S^4$
Blanlœeil, Vincent ; Saeki, Osamu
Osaka J. Math., Tome 42 (2005) no. 1, p. 751-765 / Harvested from Project Euclid
We show that a closed connected surface embedded in $S^{4} = \partial B^{5}$ bounds a handlebody of dimension 3 embedded in $B^{5}$ if and only if the Euler number of its normal bundle vanishes. Using this characterization, we show that two closed connected surfaces embedded in $S^{4}$ are cobordant if and only if they are abstractly diffeomorphic to each other and the Euler numbers of their normal bundles coincide. As an application, we show that a given Heegaard decomposition of a 3-manifold can be realized in $S^{5}$. We also give a new proof of Rohlin's theorem on embeddings of 3-manifolds into $\mathbf{R}^{5}$.
Publié le : 2005-12-14
Classification: 
@article{1153494550,
     author = {Blanl\oe eil, Vincent and Saeki, Osamu},
     title = {Cobordisme des surfaces plong\'ees dans $S^4$},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 751-765},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494550}
}
Blanlœeil, Vincent; Saeki, Osamu. Cobordisme des surfaces plongées dans $S^4$. Osaka J. Math., Tome 42 (2005) no. 1, pp.  751-765. http://gdmltest.u-ga.fr/item/1153494550/