Gröbner bases associated with positive roots and Catalan numbers
Kitamura, Tomonori
Osaka J. Math., Tome 42 (2005) no. 1, p. 421-433 / Harvested from Project Euclid
Let $\mathbf{A}_{n-1}^+ \subset \mathbb{Z}^n$ denote the set of positive roots of the root system $\mathbf{A}_{n-1}$ and $I_{\mathbf{A}_{n-1}^+}$ its toric ideal. The purpose of the present paper is to study combinatorics and algebra on $\mathbf{A}_{n-1}^+$ and $I_{\mathbf{A}_{n-1}^+}$. First, it will be proved that $I_{\mathbf{A}_{n-1}^+}$ induces an initial ideal $\mathit{in}_{<}\left(I_{\mathbf{A}_{n-1}^+}\right)$ which is generated by quadratic squarefree monomials together with cubic squarefree monomials. Second, we will associate each maximal face $\sigma$ of the unimodular triangulation $\Delta$ arising from $\mathit{in}_{<}\left(I_{\mathbf{A}_{n-1}^+}\right)$ with a certain subgraph $G_\sigma$ on $[n] = \{1,\ldots,n\}$. Third, noting that the number of maximal faces of $\Delta$ is equal to that of anti-standard trees $T$ on $[n]$ with $T \neq \{ (1,2) , (1,3), \ldots , (1,n) \}$, an explicit bijection between the set $\{ G_\sigma \colon \sigma\ \text{is a maximal face of}\ \Delta \}$ and that of anti-standard trees $T$ on $[n]$ with $T \neq \{ (1,2), (1,3), \ldots , (1,n) \}$ will be constructed. In particular, a new combinatorial expression of Catalan numbers arises.
Publié le : 2005-06-14
Classification: 
@article{1153494386,
     author = {Kitamura, Tomonori},
     title = {Gr\"obner bases associated with positive roots and Catalan numbers},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 421-433},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494386}
}
Kitamura, Tomonori. Gröbner bases associated with positive roots and Catalan numbers. Osaka J. Math., Tome 42 (2005) no. 1, pp.  421-433. http://gdmltest.u-ga.fr/item/1153494386/