An $L^{p}$-approach to singular linear parabolic equations in bounded domains
Favini, Angelo ; Lorenzi, Alfredo ; Tanabe, Hiroki ; Yagi, Atsushi
Osaka J. Math., Tome 42 (2005) no. 1, p. 385-406 / Harvested from Project Euclid
Singular means here that the parabolic equation is \textit{not} in normal form neither can it be reduced to such a form. For this class of problems, following the operator approach used in [1], we prove global in time existence and uniqueness theorems related to (spatial) $L^p$-spaces. Various improvements to [2], [3] are given.
Publié le : 2005-06-14
Classification: 
@article{1153494384,
     author = {Favini, Angelo and Lorenzi, Alfredo and Tanabe, Hiroki and Yagi, Atsushi},
     title = {An $L^{p}$-approach to singular linear parabolic equations in bounded domains},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 385-406},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494384}
}
Favini, Angelo; Lorenzi, Alfredo; Tanabe, Hiroki; Yagi, Atsushi. An $L^{p}$-approach to singular linear parabolic equations in bounded domains. Osaka J. Math., Tome 42 (2005) no. 1, pp.  385-406. http://gdmltest.u-ga.fr/item/1153494384/