The Schur indices of the cuspidal unipotent characters of the finite chevalley groups $E_{7}(q)$
Geck, Meinolf
Osaka J. Math., Tome 42 (2005) no. 1, p. 201-215 / Harvested from Project Euclid
We show that the two cuspidal unipotent characters of a finite Chevalley group $E_7(q)$ have Schur index $2$, provided that $q$ is an even power of a (sufficiently large) prime number $p$ such that $p\equiv 1 \bmod 4$. The proof uses a refinement of Kawanaka's generalized Gelfand--Graev representations and some explicit computations with the \textit{CHEVIE} computer algebra system.
Publié le : 2005-03-14
Classification: 
@article{1153494322,
     author = {Geck, Meinolf},
     title = {The Schur indices of the cuspidal unipotent characters of the finite chevalley groups $E\_{7}(q)$},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 201-215},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494322}
}
Geck, Meinolf. The Schur indices of the cuspidal unipotent characters of the finite chevalley groups $E_{7}(q)$. Osaka J. Math., Tome 42 (2005) no. 1, pp.  201-215. http://gdmltest.u-ga.fr/item/1153494322/