Special members in the bicanonical pencil of Godeaux surfaces
Lee, Yongnam
Osaka J. Math., Tome 42 (2005) no. 1, p. 163-171 / Harvested from Project Euclid
The object of this paper is to find the number of hyperelliptic curves in the bicanonical pencil of a Godeaux surface whose torsion group is $\mathbb{Z}_3$, or $\mathbb{Z}_4$, or $\mathbb{Z}_5$.
Publié le : 2005-03-14
Classification: 
@article{1153494319,
     author = {Lee, Yongnam},
     title = {Special members in the bicanonical pencil of Godeaux surfaces},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 163-171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494319}
}
Lee, Yongnam. Special members in the bicanonical pencil of Godeaux surfaces. Osaka J. Math., Tome 42 (2005) no. 1, pp.  163-171. http://gdmltest.u-ga.fr/item/1153494319/