$\alpha$-parabolic bergman spaces
Nishio, Masaharu ; Shimomura, Katsunori ; Suzuki, Noriaki
Osaka J. Math., Tome 42 (2005) no. 1, p. 133-162 / Harvested from Project Euclid
The $\alpha$-parabolic Bergman space $\bm{b}^p_\alpha$ is the set of all $p$-th integrable solutions $u$ of the equation $(\partial/\partial t + (-\Delta)^{\alpha})u = 0$ on the upper half space, where $0 < \alpha \leq 1$ and $1 \leq p \leq \infty$. The Huygens property for the above $u$ will be obtained. After verifying that the space $\bm{b}^p_\alpha$ forms a Banach space, we discuss the fundamental properties. For example, as for the duality, $(\bm{b}^p_\alpha)^* \cong \bm{b}^q_\alpha$ for $p > 1$ and $(\bm{b}^1_\alpha)^* \cong \mathcal{B}_\alpha/ \mathbf{R}$ are shown, where $q$ is the exponent conjugate to $p$ and $\mathcal{B}_\alpha$ is the $\alpha$-parabolic Bloch space.
Publié le : 2005-03-14
Classification: 
@article{1153494318,
     author = {Nishio, Masaharu and Shimomura, Katsunori and Suzuki, Noriaki},
     title = {$\alpha$-parabolic bergman spaces},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 133-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494318}
}
Nishio, Masaharu; Shimomura, Katsunori; Suzuki, Noriaki. $\alpha$-parabolic bergman spaces. Osaka J. Math., Tome 42 (2005) no. 1, pp.  133-162. http://gdmltest.u-ga.fr/item/1153494318/