Growth properties of $p$-th means of biharmonic Green potentials in the unit ball
Futamura, Toshihide ; Mizuta, Yoshihiro
Osaka J. Math., Tome 42 (2005) no. 1, p. 85-99 / Harvested from Project Euclid
Let $u$ be a biharmonic Green potential on the unit ball $\mathbf{B}$ of $\mathbf{R}^{n}$. We show that \begin{equation*} \lim_{r\to 1}(1-r)^{n-2-(n-1)/p}\mathcal{M}_p(u,r)=0 \end{equation*} for $p$ such that $1\le p<(n-1)/(n-4)$ in case $n\ge 5$ and $1\le p<\infty$ in case $n\le 4$. Further, if $n\ge 5$ and $(n-1)/(n-4)\le p<(n-1)/(n-5)$, then it is shown that \begin{equation*} \liminf_{r\to 1}(1-r)^{n-2-(n-1)/p}\mathcal{M}_p(u,r)=0. \end{equation*} Finally we show that these limits characterize biharmonic Green potentials among super-biharmonic functions on $\mathbf{B}$.
Publié le : 2005-03-14
Classification: 
@article{1153494316,
     author = {Futamura, Toshihide and Mizuta, Yoshihiro},
     title = {Growth properties of $p$-th means of biharmonic Green potentials in the unit ball},
     journal = {Osaka J. Math.},
     volume = {42},
     number = {1},
     year = {2005},
     pages = { 85-99},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1153494316}
}
Futamura, Toshihide; Mizuta, Yoshihiro. Growth properties of $p$-th means of biharmonic Green potentials in the unit ball. Osaka J. Math., Tome 42 (2005) no. 1, pp.  85-99. http://gdmltest.u-ga.fr/item/1153494316/