Hom-stacks and restriction of scalars
Olsson, Martin C.
Duke Math. J., Tome 131 (2006) no. 1, p. 139-164 / Harvested from Project Euclid
Fix an algebraic space $S$ , and let ${\mathcal X}$ and ${\mathcal Y}$ be separated Artin stacks of finite presentation over $S$ with finite diagonals (over $S$ ). We define a stack $\underline{\rm Hom}_S({\mathcal X}, {\mathcal Y})$ classifying morphisms between ${\mathcal X}$ and ${\mathcal Y}$ . Assume that ${\mathcal X}$ is proper and flat over $S$ , and assume fppf locally on $S$ that there exists a finite finitely presented flat cover $Z\rightarrow {\mathcal X}$ with $Z$ an algebraic space. Then we show that $\underline{\rm Hom}_S({\mathcal X}, {\mathcal Y})$ is an Artin stack with quasi-compact and separated diagonal
Publié le : 2006-07-15
Classification:  14A20,  14D20
@article{1152018506,
     author = {Olsson, Martin C.},
     title = {Hom-stacks and restriction of scalars},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 139-164},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1152018506}
}
Olsson, Martin C. Hom-stacks and restriction of scalars. Duke Math. J., Tome 131 (2006) no. 1, pp.  139-164. http://gdmltest.u-ga.fr/item/1152018506/