Conformal dimension does not assume values between zero and one
Kovalev, Leonid V.
Duke Math. J., Tome 131 (2006) no. 1, p. 1-13 / Harvested from Project Euclid
We prove that the conformal dimension of any metric space is at least one unless it is zero. This confirms a conjecture of J. T. Tyson [23, Conj. 1.2]
Publié le : 2006-07-15
Classification:  51F99,  47H06,  46B20
@article{1152018503,
     author = {Kovalev, Leonid V.},
     title = {Conformal dimension does not assume values between zero and one},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 1-13},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1152018503}
}
Kovalev, Leonid V. Conformal dimension does not assume values between zero and one. Duke Math. J., Tome 131 (2006) no. 1, pp.  1-13. http://gdmltest.u-ga.fr/item/1152018503/