On Lα-convergence (1≤α≤2) for a bisexual branching process with population-size dependent mating
Molina, Manuel ; Mota, Manuel ; Ramos, Alfonso
Bernoulli, Tome 12 (2006) no. 2, p. 457-468 / Harvested from Project Euclid
We investigate the Lα-convergence, 1≤α≤2, of the class of bisexual branching processes with population-size dependent mating, suitably normalized, to a finite limit W such that P(W>0)>0. Through different probabilistic approaches, we provide some necessary and sufficient conditions for such convergence. In particular we establish, by analogy with the classical Kesten and Stigum result for Bienaymé-Galton-Watson processes, a logarithmic criterion for L1-convergence.
Publié le : 2006-06-14
Classification:  bisexual processes,  branching processes,  population-size dependent processes
@article{1151525130,
     author = {Molina, Manuel and Mota, Manuel and Ramos, Alfonso},
     title = {On L$\alpha$-convergence (1$\leq$$\alpha$$\leq$2) for a bisexual branching process with population-size dependent mating},
     journal = {Bernoulli},
     volume = {12},
     number = {2},
     year = {2006},
     pages = { 457-468},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1151525130}
}
Molina, Manuel; Mota, Manuel; Ramos, Alfonso. On Lα-convergence (1≤α≤2) for a bisexual branching process with population-size dependent mating. Bernoulli, Tome 12 (2006) no. 2, pp.  457-468. http://gdmltest.u-ga.fr/item/1151525130/