Fractional integral equations and state space transforms
Buchmann, Boris ; Klüppelberg, Claudia
Bernoulli, Tome 12 (2006) no. 2, p. 431-456 / Harvested from Project Euclid
We introduce a class of stochastic differential equations driven by fractional Brownian motion which allow for a constructive method in order to obtain stationary solutions. This leads to a substantial extension of the fractional Ornstein-Uhlenbeck processes. Structural properties of this class of new models are investigated, and their stationary densities are explicitly given.
Publié le : 2006-06-14
Classification:  fractional Brownian motion,  fractional integral,  fractional Ornstein-Uhlenbeck process,  fractional Vasicek model,  Langevin equation,  long-range dependence,  Riemann-Stieltjes integrals,  state space transform,  stochastic calculus,  stochastic differential equations
@article{1151525129,
     author = {Buchmann, Boris and Kl\"uppelberg, Claudia},
     title = {Fractional integral equations and state space transforms},
     journal = {Bernoulli},
     volume = {12},
     number = {2},
     year = {2006},
     pages = { 431-456},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1151525129}
}
Buchmann, Boris; Klüppelberg, Claudia. Fractional integral equations and state space transforms. Bernoulli, Tome 12 (2006) no. 2, pp.  431-456. http://gdmltest.u-ga.fr/item/1151525129/