Inference for covariate adjusted regression via varying coefficient models
Şentürk, Damla ; Müller, Hans-Georg
Ann. Statist., Tome 34 (2006) no. 1, p. 654-679 / Harvested from Project Euclid
We consider covariate adjusted regression (CAR), a regression method for situations where predictors and response are observed after being distorted by a multiplicative factor. The distorting factors are unknown functions of an observable covariate, where one specific distorting function is associated with each predictor or response. The dependence of both response and predictors on the same confounding covariate may alter the underlying regression relation between undistorted but unobserved predictors and response. We consider a class of highly flexible adjustment methods for parameter estimation in the underlying regression model, which is the model of interest. Asymptotic normality of the estimates is obtained by establishing a connection to varying coefficient models. These distribution results combined with proposed consistent estimates of the asymptotic variance are used for the construction of asymptotic confidence intervals for the regression coefficients. The proposed approach is illustrated with data on serum creatinine, and finite sample properties of the proposed procedures are investigated through a simulation study.
Publié le : 2006-04-14
Classification:  Asymptotic normality,  binning,  confidence intervals,  multiple regression,  multiplicative effects,  varying coefficient model,  62J05,  62G08,  62G20
@article{1151418236,
     author = {\c Sent\"urk, Damla and M\"uller, Hans-Georg},
     title = {Inference for covariate adjusted regression via varying coefficient models},
     journal = {Ann. Statist.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 654-679},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1151418236}
}
Şentürk, Damla; Müller, Hans-Georg. Inference for covariate adjusted regression via varying coefficient models. Ann. Statist., Tome 34 (2006) no. 1, pp.  654-679. http://gdmltest.u-ga.fr/item/1151418236/