A Lyapunov-Schmidt method for transition layers in reaction-diffusion systems
Hale, Jack K. ; Sakamoto, Kunimochi
Hiroshima Math. J., Tome 35 (2005) no. 1, p. 205-249 / Harvested from Project Euclid
We study reaction-di¤usion systems of propagator-controller type in the one-dimensional unit interval. When propagator di¤uses slowly, we establish the existence of transition layer equilibria by using singular perturbation expansions and a Lyapunov-Schmidt reduction method. Our approach to the existence also enables us to simultaneously obtain a stability criterion for the layer equilibria.
Publié le : 2005-07-14
Classification:  35K57,  35B25,  35B35,  47J25
@article{1150998273,
     author = {Hale, Jack K. and Sakamoto, Kunimochi},
     title = {A Lyapunov-Schmidt method for transition layers in reaction-diffusion systems},
     journal = {Hiroshima Math. J.},
     volume = {35},
     number = {1},
     year = {2005},
     pages = { 205-249},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150998273}
}
Hale, Jack K.; Sakamoto, Kunimochi. A Lyapunov-Schmidt method for transition layers in reaction-diffusion systems. Hiroshima Math. J., Tome 35 (2005) no. 1, pp.  205-249. http://gdmltest.u-ga.fr/item/1150998273/