A Note on Discrete Convexity and Local Optimality
Ui, Takashi
Japan J. Indust. Appl. Math., Tome 23 (2006) no. 1, p. 21-29 / Harvested from Project Euclid
One of the most important properties of a convex function is that a local optimum is also a global optimum. This paper explores the discrete analogue of this property. We consider arbitrary locality in a discrete space and the corresponding local optimum of a function over the discrete space. We introduce the corresponding notion of discrete convexity and show that the local optimum of a function satisfying the discrete convexity is also a global optimum. The special cases include discretely-convex, integrally-convex, M-convex, $\text{M}^\natural$-convex, L-convex, and $\text{L}^\natural$-convex functions.
Publié le : 2006-02-14
Classification:  discrete optimization,  convex function,  quasiconvex function,  Nash equilibrium,  potential game
@article{1150725469,
     author = {Ui, Takashi},
     title = {A Note on Discrete Convexity and
Local Optimality},
     journal = {Japan J. Indust. Appl. Math.},
     volume = {23},
     number = {1},
     year = {2006},
     pages = { 21-29},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150725469}
}
Ui, Takashi. A Note on Discrete Convexity and
Local Optimality. Japan J. Indust. Appl. Math., Tome 23 (2006) no. 1, pp.  21-29. http://gdmltest.u-ga.fr/item/1150725469/