A generalization of the $\Delta$-genus of quasi-polarized varieties
FUKUMA, Yoshiaki
J. Math. Soc. Japan, Tome 57 (2005) no. 4, p. 1003-1044 / Harvested from Project Euclid
Let $(X,L)$ be a quasi-polarized variety defined over the complex number field. Then there are several invariants of $(X,L)$ , for example, the sectional genus and the $\Delta$ -genus. In this paper we introduce the $i$ -th $\Delta$ -genus $\Delta_{i}(X,L)$ for every integer $i$ with $0\leq i\leq n=\dim X$ . This is a generalization of the $\Delta$ -genus. Furthermore we study some properties of $\Delta_{i}(X,L)$ and we will propose some problems.
Publié le : 2005-10-14
Classification:  quasi-polarized variety,  $\Delta$-genus,  sectional geometric genus,  14C20,  14J25,  14J30,  14J40
@article{1150287302,
     author = {FUKUMA, Yoshiaki},
     title = {A generalization of the $\Delta$-genus of quasi-polarized varieties},
     journal = {J. Math. Soc. Japan},
     volume = {57},
     number = {4},
     year = {2005},
     pages = { 1003-1044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150287302}
}
FUKUMA, Yoshiaki. A generalization of the $\Delta$-genus of quasi-polarized varieties. J. Math. Soc. Japan, Tome 57 (2005) no. 4, pp.  1003-1044. http://gdmltest.u-ga.fr/item/1150287302/