An analogue of Connes-Haagerup approach for classification of subfactors of type III$_{\bf 1}$
MASUDA, Toshihiko
J. Math. Soc. Japan, Tome 57 (2005) no. 4, p. 959-1001 / Harvested from Project Euclid
Popa proved that strongly amenable subfactors of type $\mathrm{III}_1$ with the same type $\mathrm{II}$ and type $\mathrm{III}$ principal graphs are completely classified by their standard invariants. In this paper, we present a different proof of this classification theorem based on Connes and Haagerup's arguments on the uniqueness of the injective factor of type $\mathrm{III}_1$ .
Publié le : 2005-10-14
Classification:  subfactors of type $\mathrm{III}_1$,  standard invariants,  symmetric enveloping algebras,  relative bicentralizer,  modular automorphisms,  46L37,  46L40
@article{1150287301,
     author = {MASUDA, Toshihiko},
     title = {An analogue of Connes-Haagerup approach for classification of subfactors of type III$\_{\bf 1}$},
     journal = {J. Math. Soc. Japan},
     volume = {57},
     number = {4},
     year = {2005},
     pages = { 959-1001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150287301}
}
MASUDA, Toshihiko. An analogue of Connes-Haagerup approach for classification of subfactors of type III$_{\bf 1}$. J. Math. Soc. Japan, Tome 57 (2005) no. 4, pp.  959-1001. http://gdmltest.u-ga.fr/item/1150287301/