Sierpinski-Zygmund uniform limits of extendable connectivity functions .
Rosen, Harvey
Real Anal. Exchange, Tome 28 (2002) no. 1, p. 105-110 / Harvested from Project Euclid
We show that the class $SZ$ of Sierpinski-Zygmund functions has a nonempty intersection with the class $\extb$ of all uniform limits of sequences of extendable connectivity functions $f_n:\R\to\R.$ We reconsider the idea of $f$-negligible sets this time with respect to $f\in \extb.$ We also show that under MA, $SZ\cap \extb$ cannot be characterized by preimages of sets.
Publié le : 2002-05-14
Classification:  Sierpinski-Zygmund function,  uniform limit of extendable connectivity functions,  negligible set,  characterization by preimages,  26A15,  54C30
@article{1150118741,
     author = {Rosen, Harvey},
     title = {Sierpinski-Zygmund uniform limits of extendable connectivity functions .},
     journal = {Real Anal. Exchange},
     volume = {28},
     number = {1},
     year = {2002},
     pages = { 105-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150118741}
}
Rosen, Harvey. Sierpinski-Zygmund uniform limits of extendable connectivity functions .. Real Anal. Exchange, Tome 28 (2002) no. 1, pp.  105-110. http://gdmltest.u-ga.fr/item/1150118741/