Common fixed points for commuting Cournot maps.
Linero, A.
Real Anal. Exchange, Tome 28 (2002) no. 1, p. 121-145 / Harvested from Project Euclid
We study some conditions to guarantee the existence of common fixed points of two commuting Cournot maps $F(x,y)=(f_{2}(y),f_{1}(x)),$ $G(x,y)=(g_{2}(y),g_{1}(x)),$ defined from $I^{2}=[0,1]^{2}$ into itself. In particular, we prove that Jungck's Theorem and Jachymski's equivalent conditions can be only partially proved in this setting.
Publié le : 2002-05-14
Classification:  Commuting functions,  periodic point,  common fixed point,  Cournot duopoly,  Cournot maps,  Jungck's Theorem,  equicontinuous family,  37E99,  26A18
@article{1150118736,
     author = {Linero, A.},
     title = {Common fixed points for commuting Cournot maps.},
     journal = {Real Anal. Exchange},
     volume = {28},
     number = {1},
     year = {2002},
     pages = { 121-145},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150118736}
}
Linero, A. Common fixed points for commuting Cournot maps.. Real Anal. Exchange, Tome 28 (2002) no. 1, pp.  121-145. http://gdmltest.u-ga.fr/item/1150118736/