Recently a connection has been found between the improper Kurzweil-Henstock integral on the real line and the integral over a compact space. In this paper these results are extended to a Pettis-type integral for the case of functions with values in Riesz spaces with ``enough" order continuous functionals.
Publié le : 2002-05-14
Classification:
Riesz spaces,
compact topological spaces,
order continuous linear functionals,
Henstock-Kurzweil integral,
Pettis integral,
28B15,
28B05,
28B10,
46G10
@article{1150118728,
author = {Boccuto, A. and Rie\v can, B.},
title = {A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces.},
journal = {Real Anal. Exchange},
volume = {28},
number = {1},
year = {2002},
pages = { 153-162},
language = {en},
url = {http://dml.mathdoc.fr/item/1150118728}
}
Boccuto, A.; Riečan, B. A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces.. Real Anal. Exchange, Tome 28 (2002) no. 1, pp. 153-162. http://gdmltest.u-ga.fr/item/1150118728/