A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces.
Boccuto, A. ; Riečan, B.
Real Anal. Exchange, Tome 28 (2002) no. 1, p. 153-162 / Harvested from Project Euclid
Recently a connection has been found between the improper Kurzweil-Henstock integral on the real line and the integral over a compact space. In this paper these results are extended to a Pettis-type integral for the case of functions with values in Riesz spaces with ``enough" order continuous functionals.
Publié le : 2002-05-14
Classification:  Riesz spaces,  compact topological spaces,  order continuous linear functionals,  Henstock-Kurzweil integral,  Pettis integral,  28B15,  28B05,  28B10,  46G10
@article{1150118728,
     author = {Boccuto, A. and Rie\v can, B.},
     title = {A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces.},
     journal = {Real Anal. Exchange},
     volume = {28},
     number = {1},
     year = {2002},
     pages = { 153-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1150118728}
}
Boccuto, A.; Riečan, B. A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces.. Real Anal. Exchange, Tome 28 (2002) no. 1, pp.  153-162. http://gdmltest.u-ga.fr/item/1150118728/