We will study special solutions of the sixth Painlevé
equation which are meromorphic at a fixed singularity. We
will calculate the linear monodromy for our solutions. We
will show the relation between Umemura's classical solutions
and our solutions.
Publié le : 2006-05-14
Classification:
The Painlevé equation,
monodromy data,
34M55,
33C15
@article{1149166654,
author = {Kaneko, Kazuo},
title = {Painlev\'e VI transcendents which are meromorphic at a fixed singularity},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {82},
number = {2},
year = {2006},
pages = { 71-76},
language = {en},
url = {http://dml.mathdoc.fr/item/1149166654}
}
Kaneko, Kazuo. Painlevé VI transcendents which are meromorphic at a fixed singularity. Proc. Japan Acad. Ser. A Math. Sci., Tome 82 (2006) no. 2, pp. 71-76. http://gdmltest.u-ga.fr/item/1149166654/