Compact embeddings of Brézis-Wainger type
Cobos , Fernando ; Kühn , Thomas ; Schonbek , Tomas
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 305-322 / Harvested from Project Euclid
Let $\Omega$ be a bounded domain in $\mathbb R^n$ and denote by $id_\Omega$ the restriction operator from the Besov space $B_{pq}^{1+n/p}(\mathbb R^n)$ into the generalized Lipschitz space $Lip^{(1,-\alpha)}(\Omega)$. We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like $e_k(id_\Omega) \sim k^{-1/p}$ if $\alpha > \max (1+2/p-1/q,1/p)$. Our estimates improve previous results by Edmunds and Haroske.
Publié le : 2006-05-15
Classification:  entropy numbers,  compact embeddings,  Besov spaces,  Lipschitz spaces,  47B06,  46E35,  46B50
@article{1148492184,
     author = {Cobos ,  Fernando and K\"uhn ,  Thomas and Schonbek ,  Tomas},
     title = {Compact embeddings of Br\'ezis-Wainger type},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 305-322},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148492184}
}
Cobos ,  Fernando; Kühn ,  Thomas; Schonbek ,  Tomas. Compact embeddings of Brézis-Wainger type. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  305-322. http://gdmltest.u-ga.fr/item/1148492184/