On Clifford's theorem for rank-3 bundles
Lange , Herbert ; Newstead , Peter E.
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 287-304 / Harvested from Project Euclid
In this paper we obtain bounds on $h^0(E)$ where $E$ is a semistable bundle of rank 3 over a smooth irreducible projective curve $X$ of genus $g \geq 2$ defined over an algebraically closed field of characteristic 0. These bounds are expressed in terms of the degrees of stability $s_1(E)$, $s_2(E)$. We show also that in some cases the bounds are best possible. These results extend recent work of J. Cilleruelo and I. Sols for bundles of rank 2.
Publié le : 2006-05-15
Classification:  vector bundle,  subbundle,  14H60,  14F05,  32L10
@article{1148492183,
     author = {Lange ,  Herbert and Newstead ,  Peter E.},
     title = {On Clifford's theorem for rank-3 bundles},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 287-304},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148492183}
}
Lange ,  Herbert; Newstead ,  Peter E. On Clifford's theorem for rank-3 bundles. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  287-304. http://gdmltest.u-ga.fr/item/1148492183/