The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains
Lanzani , Loredana ; Méndez , Osvaldo
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 181-204 / Harvested from Project Euclid
Given a bounded Lipschitz domain $\Omega\subset {\mathbb R}^n$, $n\geq 3$, we prove~that the Poisson's problem for the Laplacian with right-hand side in $L^p_{-t}(\Omega)$, Robin-type boundary datum in the Besov space $B^{1-1/p-t,p}_{p}(\partial \Omega)$ and non-negative, non-everywhere vanishing Robin coefficient $b\in L^{n-1}(\partial \Omega)$, is uniquely solvable in the class $L^p_{2-t}(\Omega)$ for $(t,\frac{1}{p})\in {\mathcal V}_{\epsilon}$, where ${\mathcal V}_{\epsilon}$ ($\epsilon\geq 0$) is an open ($\Omega$,$b$)-dependent plane region and ${\mathcal V}_{0}$ is to be interpreted ad the common (optimal) solvability region for all Lipschitz domains. We prove a similar regularity result for the Poisson's problem for the 3-dimensional Lamé System with traction-type Robin boundary condition. All solutions are expressed as boundary layer potentials.
Publié le : 2006-05-15
Classification:  non-smooth domains,  Besov spaces,  Triebel-Lizorkin spaces,  boundary layer potentials,  regularity of PDE's,  Robin condition,  Lamé system,  Poisson's problem,  45E99,  47G10,  46E35
@article{1148492180,
     author = {Lanzani ,  Loredana and M\'endez ,  Osvaldo},
     title = {The Poisson's problem for the Laplacian with Robin
 boundary condition in non-smooth domains},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 181-204},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148492180}
}
Lanzani ,  Loredana; Méndez ,  Osvaldo. The Poisson's problem for the Laplacian with Robin
 boundary condition in non-smooth domains. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  181-204. http://gdmltest.u-ga.fr/item/1148492180/