Given a bounded Lipschitz domain $\Omega\subset {\mathbb R}^n$, $n\geq 3$, we
prove~that the Poisson's problem for the Laplacian with right-hand side in
$L^p_{-t}(\Omega)$, Robin-type boundary datum in the Besov space
$B^{1-1/p-t,p}_{p}(\partial \Omega)$ and non-negative, non-everywhere vanishing
Robin coefficient $b\in L^{n-1}(\partial \Omega)$, is uniquely solvable in the
class $L^p_{2-t}(\Omega)$ for $(t,\frac{1}{p})\in {\mathcal V}_{\epsilon}$,
where ${\mathcal V}_{\epsilon}$ ($\epsilon\geq 0$) is an open
($\Omega$,$b$)-dependent plane region and ${\mathcal V}_{0}$ is to be
interpreted ad the common (optimal) solvability region for all Lipschitz
domains. We prove a similar regularity result for the Poisson's problem for the
3-dimensional Lamé System with traction-type Robin boundary condition. All
solutions are expressed as boundary layer potentials.
Publié le : 2006-05-15
Classification:
non-smooth domains,
Besov spaces,
Triebel-Lizorkin spaces,
boundary layer potentials,
regularity of PDE's,
Robin condition,
Lamé system,
Poisson's problem,
45E99,
47G10,
46E35
@article{1148492180,
author = {Lanzani , Loredana and M\'endez , Osvaldo},
title = {The Poisson's problem for the Laplacian with Robin
boundary condition in non-smooth domains},
journal = {Rev. Mat. Iberoamericana},
volume = {22},
number = {2},
year = {2006},
pages = { 181-204},
language = {en},
url = {http://dml.mathdoc.fr/item/1148492180}
}
Lanzani , Loredana; Méndez , Osvaldo. The Poisson's problem for the Laplacian with Robin
boundary condition in non-smooth domains. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp. 181-204. http://gdmltest.u-ga.fr/item/1148492180/