We show that there are Hilbert spaces constructed from the Hausdorff measures
$\mathcal{H}^{s}$ on the real line $\mathbb{R}$ with $0 < s < 1$
which admit multiresolution wavelets. For the case of the middle-third Cantor
set $\mathbf{C}\subset \lbrack 0,1]$, the Hilbert space is a separable subspace
of $L^{2}(\mathbb{R},(dx)^{s})$ where $s=\log _{3}(2)$. While we develop the
general theory of multi-resolutions in fractal Hilbert spaces, the emphasis is
on the case of scale $3$ which covers the traditional Cantor set $\mathbf{C}$.
Introducing \begin{equation*} \psi_{1}(x)=\sqrt{2}\chi _{\mathbf{C}}(3x-1)
\qquad\mbox{and}\qquad \psi _{2}(x)=\chi _{\mathbf{C}}(3x)-
\chi_{\mathbf{C}}(3x-2) \end{equation*} we first describe the subspace in
$L^{2}(\mathbb{R},(dx)^{s})$ which has the following family as an orthonormal
basis (ONB): \begin{equation*} \psi_{i,j,k}(x)=2^{j/2}\psi_{i}(3^{j}x-k)\text{,}
\end{equation*} where $i=1,2,j$, $k\in \mathbb{Z}$. Since the affine iteration
systems of Cantor type arise from a certain algorithm in $\mathbb{R}^d$ which
leaves gaps at each step, our wavelet bases are in a sense gap-filling
constructions.
Publié le : 2006-05-15
Classification:
Hausdorff measure,
Cantor sets,
iterated function systems (IFS),
fractal,
wavelets,
Hilbert space,
unitary operators,
orthonormal basis (ONB),
spectrum,
transfer operator,
cascade approximation,
scaling,
translation,
41A15,
42A16,
42A65,
42C40,
43A65,
46L60,
47D25,
46L45
@article{1148492179,
author = {Dutkay , Dorin E. and Jorgensen , Palle E. T.},
title = {Wavelets on Fractals},
journal = {Rev. Mat. Iberoamericana},
volume = {22},
number = {2},
year = {2006},
pages = { 131-180},
language = {en},
url = {http://dml.mathdoc.fr/item/1148492179}
}
Dutkay , Dorin E.; Jorgensen , Palle E. T. Wavelets on Fractals. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp. 131-180. http://gdmltest.u-ga.fr/item/1148492179/