Super and ultracontractive bounds for doubly nonlinear evolution equations
Bonforte , Matteo ; Grillo , Gabriele
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 111-129 / Harvested from Project Euclid
We use logarithmic Sobolev inequalities involving the $p$--energy functional recently derived in [Del Pino, M. and Dolbeault, J.: The optimal euclidean $\mathrm{L}^p$-Sobolev logarithmic inequality. J. Funct. Anal. 197 (2003), 151-161], [Gentil, I.: The general optimal $\mathrm{L}^p$-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal. 202 (2003), 591-599] to prove L$^p$-L$^q$ smoothing and decay properties, of supercontractive and ultracontractive type, for the semigroups associated to doubly nonlinear evolution equations of the form $\dot u=\triangle_p(u^m)$ (with $(m(p-1)\ge 1$) in an arbitrary euclidean domain, homogeneous Dirichlet boundary conditions being assumed. The bounds are of the form $\Vert u(t)\Vert_q\le C\Vert u_0\Vert_r^\gamma/t^\beta$ for any $r\le q\in[1,+\infty]$ and $t>0$ and the exponents $\beta,\gamma$ are shown to be the only possible for a bound of such type.
Publié le : 2006-05-15
Classification:  doubly nonlinear evolutions,  contractivity properties,  asymptotics,  logarithmic Sobolev inequalities,  35K55,  35B45
@article{1148492178,
     author = {Bonforte ,  Matteo and Grillo ,  Gabriele},
     title = {Super and ultracontractive bounds for doubly nonlinear
 evolution equations},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 111-129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148492178}
}
Bonforte ,  Matteo; Grillo ,  Gabriele. Super and ultracontractive bounds for doubly nonlinear
 evolution equations. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  111-129. http://gdmltest.u-ga.fr/item/1148492178/