An extension of the Krein-Šmulian Theorem
Suárez Granero , Antonio
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 93-110 / Harvested from Project Euclid
Let $X$ be a Banach space, $u\in X^{**}$ and $K, Z$ two subsets of $X^{**}$. Denote by $d(u,Z)$ and $d(K,Z)$ the distances to $Z$ from the point $u$ and from the subset $K$ respectively. The Krein-Šmulian Theorem asserts that the closed convex hull of a weakly compact subset of a Banach space is weakly compact; in other words, every w$^*$-compact subset $K\subset X^{**}$ such that $d(K,X)=0$ satisfies $d(\overline{\text{co}}^{w^*}(K),X)=0$. We extend this result in the following way: if $Z\subset X$ is a closed subspace of $X$ and $K\subset X^{**}$ is a w$^*-$compact subset of $X^{**}$, then $$ d(\overline{\text{co}}^{w^*}(K),Z)\leq 5 d(K,Z). $$ Moreover, if $Z\cap K$ is w$^*$-dense in $K$, then $d(\overline{\text{co}}^{w^*}(K),Z)\leq 2 d(K,Z)$. However, the equality $d(K,X)=d(\overline{\text{co}}^{w^*}(K),X)$ holds in many cases, for instance, if $\ell_1\not\subseteq X^*$, if $X$ has w$^*$-angelic dual unit ball (for example, if $X$ is WCG or WLD), if $X=\ell_1(I)$, if $K$ is fragmented by the norm of $X^{**}$, etc. We also construct under $CH$ a w$^*$-compact subset $K\subset B(X^{**})$ such that $K\cap X$ is w$^*$-dense in $K$, $d(K,X)=\frac 12$ and $d(\overline{\text{co}}^{w^*}(K),X)=1$.
Publié le : 2006-05-15
Classification:  Krein-Šmulian Theorem,  Banach spaces,  compact sets,  46B20,  46B26
@article{1148492177,
     author = {Su\'arez Granero ,  Antonio},
     title = {An extension of the Krein-\v Smulian Theorem},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 93-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148492177}
}
Suárez Granero ,  Antonio. An extension of the Krein-Šmulian Theorem. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  93-110. http://gdmltest.u-ga.fr/item/1148492177/