A note on the $\mathbf {Z}_p \times \mathbf {Z}_q$-extension over $\mathbf {Q}$
Horie, Kuniaki
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 84-86 / Harvested from Project Euclid
Let $S$ be a non-empty set of prime numbers; $1 \leq |S| \leq \infty$. Let $\mathbf{Q}^S$ denote the abelian extension of the rational field $\mathbf{Q}$ whose Galois group over $\mathbf{Q}$ is topologically isomorphic to the direct product of the additive groups of $l$-adic integers for all $l \in S$. In this note, we shall give simple examples of $S$ such that, for some $l \in S$, the Hilbert $l$-class field over $\mathbf{Q}^S$ is a nontrivial extension of $\mathbf{Q}^S$. Our results imply that, if $S$ contains 2, 3, 31, and 73, then there exists an unramified cyclic extension of degree $2263 = 31 \cdot 73$ over $\mathbf{Q}^S$.
Publié le : 2001-06-14
Classification:  Hilbert class field,  Iwasawa theory,  11R20,  11R23
@article{1148479940,
     author = {Horie, Kuniaki},
     title = {A note on the $\mathbf {Z}\_p \times \mathbf {Z}\_q$-extension over $\mathbf {Q}$},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 84-86},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148479940}
}
Horie, Kuniaki. A note on the $\mathbf {Z}_p \times \mathbf {Z}_q$-extension over $\mathbf {Q}$. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  84-86. http://gdmltest.u-ga.fr/item/1148479940/