The lifted Futaki invariants for Riemann surfaces
Tsuboi, Kenji
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 75-78 / Harvested from Project Euclid
It is conjectured that the lifted Futaki invariant of an $n$-dimensional compact complex manifold vanishes if it admits an Einstein-Kähler metric. If the conjecture holds for $n = 1$, the lifted Futaki invariants for Riemann surfaces must vanish because Riemann surfaces always admit Einstein-Kähler metrics. In this paper, we prove the vanishing of the lifted Futaki invariants for Riemann surfaces under a certain assumption. Our main result is Theorem 1.3.
Publié le : 2001-06-14
Classification:  The lifted Futaki invariant,  complex manifold,  Einstein-Kähler metric,  Riemann surface,  32Q20,  30F99,  58J20
@article{1148479938,
     author = {Tsuboi, Kenji},
     title = {The lifted Futaki invariants for Riemann surfaces},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 75-78},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148479938}
}
Tsuboi, Kenji. The lifted Futaki invariants for Riemann surfaces. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  75-78. http://gdmltest.u-ga.fr/item/1148479938/