The unitary part of class $\mathcal {F}$ contractions
Yoshino, Takashi
Proc. Japan Acad. Ser. A Math. Sci., Tome 75 (1999) no. 10, p. 50-52 / Harvested from Project Euclid
We say that a bounded linear operator $T$ on a Hilbert space $\mathcal{H}$ belongs to the class $\mathcal{F}$ if $T$ satisfies the following Fuglede's property that, for a given isometry $W$ on $\mathcal{H}$, $SW^*=TS$ for some bounded linear operator $S$ on $\mathcal{H}$ always implies $SW=T^*S$. Such class is wider than the class of paranormal contractions, the class of dominant operators and the class $\mathcal{Y}$ which was introduced in [4]. In this paper, we prove that, for the class $\mathcal{F}$ contraction $T$ on $\mathcal{H}$, the positive square root $A_{T^*}$ of the strong limit of $T^nT^{*n}$ is the projection from $\mathcal{H}$ onto $\mathcal{H}_T^{(u)}$ on which the unitary part of $T$ acts.
Publié le : 1999-04-14
Classification:  contraction,  unitary part,  hyponormal operators,  paranormal operators,  dominant operators,  47B20,  47A65
@article{1148393937,
     author = {Yoshino, Takashi},
     title = {The unitary part of class $\mathcal {F}$ contractions},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {75},
     number = {10},
     year = {1999},
     pages = { 50-52},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393937}
}
Yoshino, Takashi. The unitary part of class $\mathcal {F}$ contractions. Proc. Japan Acad. Ser. A Math. Sci., Tome 75 (1999) no. 10, pp.  50-52. http://gdmltest.u-ga.fr/item/1148393937/