The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces
Sasaki, Takeshi ; Yoshida, Masaaki
Proc. Japan Acad. Ser. A Math. Sci., Tome 75 (1999) no. 10, p. 129-133 / Harvested from Project Euclid
We find the uniformizing equation, governing the developing map, of a complex hyperbolic structure on the (4-dimensional) moduli space of marked cubic surfaces. Our equation is invariant under the action of the Weyl group of type $E_6$.
Publié le : 1999-09-14
Classification:  uniformizing differential equation,  cubic surface,  moduli space,  Schwarzian derivative,  complex hyperbolic structure,  developing map,  Weyl group
@article{1148393866,
     author = {Sasaki, Takeshi and Yoshida, Masaaki},
     title = {The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {75},
     number = {10},
     year = {1999},
     pages = { 129-133},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393866}
}
Sasaki, Takeshi; Yoshida, Masaaki. The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces. Proc. Japan Acad. Ser. A Math. Sci., Tome 75 (1999) no. 10, pp.  129-133. http://gdmltest.u-ga.fr/item/1148393866/