On a differential subordination for domains bounded by parabolas
Kim, Yong Chan ; Lecko, Adam
Proc. Japan Acad. Ser. A Math. Sci., Tome 75 (1999) no. 10, p. 163-165 / Harvested from Project Euclid
Let the domain $\Omega_{\alpha, \beta}$, $\alpha > 0$, $-\infty < \beta < 1$, be bounded by a parabola $y^2 = 4 \alpha (x - \beta)$ in the complex plane $\mathbb{C}$ and let $P_{\alpha, \beta}$ be the analytic and univalent function with $P_{\alpha, \beta}(0) = 1$ and $P_{\alpha, \beta}(\mathcal{U}) = \Omega_{\alpha, \beta}$, where $\mathcal{U} = \{z : |z| < 1 \}$ denote the unit disk in the plane. In this paper, we investigate some interesting properties of a differential subordination of the form \[ p(z) + \gamma z p^{\prime} (z) \prec P_{\alpha, \beta}(z) \quad (z \in \mathcal{U}) \] for $\gamma \ge 0$.
Publié le : 1999-11-14
Classification:  30C45
@article{1148393824,
     author = {Kim, Yong Chan and Lecko, Adam},
     title = {On a differential subordination for domains bounded by parabolas},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {75},
     number = {10},
     year = {1999},
     pages = { 163-165},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393824}
}
Kim, Yong Chan; Lecko, Adam. On a differential subordination for domains bounded by parabolas. Proc. Japan Acad. Ser. A Math. Sci., Tome 75 (1999) no. 10, pp.  163-165. http://gdmltest.u-ga.fr/item/1148393824/