An analogue of Yi's theorem to holomorphic mappings
Shirosaki, Manabu ; Ueda, Masatsugu
Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, p. 1-3 / Harvested from Project Euclid
This paper gives pairs of explicit hypersurfaces $(S_1, S_2)$ of each complex projective space $\boldsymbol{P}$ for which holds an analogue of Yi's uniqueness theorem [Y]: two linearly non-degenerate holomorphic mappings $f, g\colon \boldsymbol{C} \to \boldsymbol{P}$ are equal if $f^{-1}(S_j) = g^{-1}(S_j)$ ($j = 1, 2$) as divisors.
Publié le : 2000-01-14
Classification:  Uniqueness theorem,  Nevanlinna theory,  32H30
@article{1148393603,
     author = {Shirosaki, Manabu and Ueda, Masatsugu},
     title = {An analogue of Yi's theorem to holomorphic mappings},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {76},
     number = {10},
     year = {2000},
     pages = { 1-3},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393603}
}
Shirosaki, Manabu; Ueda, Masatsugu. An analogue of Yi's theorem to holomorphic mappings. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp.  1-3. http://gdmltest.u-ga.fr/item/1148393603/