On arithmetic infinite graphs
Nagoshi, Hirofumi
Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, p. 22-25 / Harvested from Project Euclid
We compute explicitly the Selberg trace formula for principal congruence subgroups $\Gamma$ of $PGL(2, \mathbf{F}_q[t])$, which is the modular group in positive characteristic cases. It is known that $\Gamma \backslash X$ is an infinite Ramanujan diagram, where $X$ is the $q + 1$-regular tres. We express the Selberg zeta function for $\Gamma$ as the determinant of the adjacency operator which is composed of both discrete and continuous spectra. They are rational functions in $q^{-s}$. We also discuss the limit distribution of eigenvalues of $\Gamma \backslash X$ as the level tends to infinity.
Publié le : 2000-02-14
Classification:  Function field,  Selberg trace formula,  Ihara-Selberg zeta function,  Ramanujan graph/diagram,  graph spectra,  11M36,  11F72,  05C50,  58J50
@article{1148393583,
     author = {Nagoshi, Hirofumi},
     title = {On arithmetic infinite graphs},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {76},
     number = {10},
     year = {2000},
     pages = { 22-25},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393583}
}
Nagoshi, Hirofumi. On arithmetic infinite graphs. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp.  22-25. http://gdmltest.u-ga.fr/item/1148393583/