$q$-deformation of the group algebra $k[\widehat {W}]$ associated to the elliptic root system $A_l^{(1,1)}$ ($l \geq 2$)
Takebayashi, Tadayoshi
Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, p. 35-38 / Harvested from Project Euclid
In the case of elliptic root system $A_l^{(1,1)}$ ($l \geq 2$), a $q$-deformation algebra of the hyperbolic extension of the elliptic Weyl group is constructed by using a representation according to Kazhdan-Lusztig.
Publié le : 2000-03-14
Classification:  $q$-deformation of the hyperbolic extension of the elliptic Weyl group,  20C15
@article{1148393558,
     author = {Takebayashi, Tadayoshi},
     title = {$q$-deformation of the group algebra $k[\widehat {W}]$ associated to the elliptic root system $A\_l^{(1,1)}$ ($l \geq 2$)},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {76},
     number = {10},
     year = {2000},
     pages = { 35-38},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393558}
}
Takebayashi, Tadayoshi. $q$-deformation of the group algebra $k[\widehat {W}]$ associated to the elliptic root system $A_l^{(1,1)}$ ($l \geq 2$). Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp.  35-38. http://gdmltest.u-ga.fr/item/1148393558/