Asymptotic behaviour of length spectrum of circles on non-flat complex space forms
Adachi, Toshiaki
Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, p. 60-65 / Harvested from Project Euclid
In this paper, we study length spectrum of circles on a complex projective space and on a complex hyperbolic space. In particular, we focus ourselves on the asymptotic behaviour of the number of congruency classes of circles with length $\lambda$ and on the asymptotic behaviour of the number of congruency classes of circles of prescribed geodesic curvature with length not greater than $\lambda$.
Publié le : 2000-05-14
Classification:  Length spectrum,  circle,  complex space form,  53C22,  53C35
@article{1148393514,
     author = {Adachi, Toshiaki},
     title = {Asymptotic behaviour of length spectrum of circles on non-flat complex space forms},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {76},
     number = {10},
     year = {2000},
     pages = { 60-65},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393514}
}
Adachi, Toshiaki. Asymptotic behaviour of length spectrum of circles on non-flat complex space forms. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp.  60-65. http://gdmltest.u-ga.fr/item/1148393514/