Let $p$ be an odd prime number. We show that the Iwasawa invariants
of a certain non-abelian $p$-extension fields of $\mathbf{Q}$
vanish. And we construct non-abelian $p$-extensions over some
imaginary quadratic fields satisfying Leopoldt's conjecture
on the $p$-adic regulator.
Publié le : 2000-09-14
Classification:
The Iwasawa invariants,
Leopoldt's conjecture,
embedding problems,
11R23,
11R27
@article{1148393469,
author = {Kubotera, Norikazu},
title = {Greenberg's conjecture and Leopoldt's conjecture},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {76},
number = {10},
year = {2000},
pages = { 108-110},
language = {en},
url = {http://dml.mathdoc.fr/item/1148393469}
}
Kubotera, Norikazu. Greenberg's conjecture and Leopoldt's conjecture. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp. 108-110. http://gdmltest.u-ga.fr/item/1148393469/