Let $t \equiv 3 \mod 4$ ($t > 3$) be a prime and $\sigma_r\colon
\zeta_t \rightarrow \zeta_t^r$ be a generator of
$\operatorname{Gal}(\mathbf{Q}(\zeta_t) / \mathbf{Q}(\sqrt{-t}))$
for $r \in \{1,\dots,t-1\}$. If $p = tn + r$ is a prime,
then $4p^h$ can be expressed as the form $4p^h = a^2 + tb^2$
where $h$ is the class number of $\mathbf{Q}(\sqrt{-t})$.
Let $\alpha t$ be the sum of representatives of $\langle r
\rangle $ in $(\mathbf{Z}/t\mathbf{Z})^{\times}$ and $\beta
= \phi(t)/2 - \alpha$. If we choose the sign of $a$ then $a
\equiv 2p^{\beta} \mod t$ and $a$ satisfies a certain congruence
relation modulo $p$. We also treat the case of $t = 4k$ for
a prime $k \equiv 1 \mod 4$.
@article{1148393468,
author = {Lee, Dong Hoon and Hahn, Sang Geun},
title = {Some congruences for binomial coefficients. II},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {76},
number = {10},
year = {2000},
pages = { 104-107},
language = {en},
url = {http://dml.mathdoc.fr/item/1148393468}
}
Lee, Dong Hoon; Hahn, Sang Geun. Some congruences for binomial coefficients. II. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp. 104-107. http://gdmltest.u-ga.fr/item/1148393468/