In this paper we determine the galois group $\operatorname{Gal}(F_1/\mathbf{Q})$
where $F_1$ is the compositum of first layers of all $\mathbf{Z}_2$-extensions
over an imaginary quadratic field. Moreover, we construct $F_1$
explicitly when $k$ has class number one.
@article{1148393426,
author = {Oh, Jangheon},
title = {The first layer of $\mathbf {Z}\_2^2$-extension over imaginary quadratic fields},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {76},
number = {10},
year = {2000},
pages = { 132-134},
language = {en},
url = {http://dml.mathdoc.fr/item/1148393426}
}
Oh, Jangheon. The first layer of $\mathbf {Z}_2^2$-extension over imaginary quadratic fields. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp. 132-134. http://gdmltest.u-ga.fr/item/1148393426/