The first layer of $\mathbf {Z}_2^2$-extension over imaginary quadratic fields
Oh, Jangheon
Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, p. 132-134 / Harvested from Project Euclid
In this paper we determine the galois group $\operatorname{Gal}(F_1/\mathbf{Q})$ where $F_1$ is the compositum of first layers of all $\mathbf{Z}_2$-extensions over an imaginary quadratic field. Moreover, we construct $F_1$ explicitly when $k$ has class number one.
Publié le : 2000-11-14
Classification:  Iwasawa theory,  $\mathbf {Z}_p$-extension,  galois group,  11R23
@article{1148393426,
     author = {Oh, Jangheon},
     title = {The first layer of $\mathbf {Z}\_2^2$-extension over imaginary quadratic fields},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {76},
     number = {10},
     year = {2000},
     pages = { 132-134},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393426}
}
Oh, Jangheon. The first layer of $\mathbf {Z}_2^2$-extension over imaginary quadratic fields. Proc. Japan Acad. Ser. A Math. Sci., Tome 76 (2000) no. 10, pp.  132-134. http://gdmltest.u-ga.fr/item/1148393426/