Note on the ring of integers of a Kummer extension of prime degree. II
Ichimura, Humio
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 25-28 / Harvested from Project Euclid
Let $p$ be a prime number, and $a$ $(\in \mathbf{Q}^{\times})$ a rational number. Then, F. Kawamoto proved that the cyclic extension $\mathbf{Q}(\zeta_p, a^{1/p})/\mathbf{Q}(\zeta_p)$ has a normal integral basis if it is at most tamely ramified. We give some generalized version of this result replacing the base field $\mathbf{Q}$ with some real abelian fields of prime power conductor.
Publié le : 2001-02-14
Classification:  Normal integral basis,  tame extension,  Kummer extension of prime degree,  11R33,  11R18
@article{1148393122,
     author = {Ichimura, Humio},
     title = {Note on the ring of integers of a Kummer extension of prime degree. II},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 25-28},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393122}
}
Ichimura, Humio. Note on the ring of integers of a Kummer extension of prime degree. II. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  25-28. http://gdmltest.u-ga.fr/item/1148393122/