On certain Cohomology Set for $\Gamma _0(N)$
Ono, Takashi
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 39-41 / Harvested from Project Euclid
Let $G = \Gamma_0(N)$, $N \not\equiv 3 \pmod{4}$ and $g$ be the group generated by the involution $z \mapsto -1/Nz$ of the upper half plane. We determine the cohomology set $H^1(g,G)$ in terms of the class number of quadratic forms of discriminant $-4N$.
Publié le : 2001-03-14
Classification:  Congruence subgroups of level $N$,  the involution,  cohomology sets,  binary quadratic forms,  class number of orders,  11F75
@article{1148393108,
     author = {Ono, Takashi},
     title = {On certain Cohomology Set for $\Gamma \_0(N)$},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 39-41},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393108}
}
Ono, Takashi. On certain Cohomology Set for $\Gamma _0(N)$. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  39-41. http://gdmltest.u-ga.fr/item/1148393108/